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The control of oxygen delivery to mechanically
ventilated newborn infants is a time intensive process
that must balance adequate tissue oxygenation against
possible toxic effects of oxygen exposure.
Investigation in computer assisted control of
mechanical ventilation is increasing, although very
few studies involve newborn infants. We have
implemented a fuzzy controller for the adjustment of
inspired oxygen concentration (Ff02) in ventilated
newborns. The controller utilizes rules produced by
neonatologists, and operates in real-time. A clinical
trial of this controller is currently taking place in the
neonatal intensive care unit (NICU) of Children's
Hospital, Boston, MA.

INTRODUCTION
Oxygen toxicity plays a role in the development of
chronic lung disease in newborn infants requiring
mechanical ventilation. [1,2] In premature infants,
inadequate maintenance of tissue oxygenation is
implicated in the development of retinopathy of
prematurity. [3] In order to avoid the effects of too
much or too little oxygen, control of oxygen delivery
to ventilated newborns has become a priority in
neonatal intensive care.

Among the many ventilator parameters that affect
patient respiratory status, the inspired oxygen
concentration (FI02) is most frequently manually
adjusted on an acute basis to control oxygen delivery
and maintain patient hemoglobin oxygen saturation
levels. Manual control of the FIO2, however, may
lag the clinical condition of the patient. That is, a
patient may have an increased oxygen requirement as
demonstrated by a lower oxygen saturation, but the
manual increase of FI02 may be delayed by human
response times (i.e. a clinician may not be present to
respond immediately). Conversely, a patient may
have a decreased oxygen requirement as clinical
conditions improve, yet the amount of oxygen
delivered may not be immediately decreased. The latter
scenario may be more common because of the
perception that a patient with high oxygen saturation
is "doing well" and does not require immediate
intervention.

We have designed a microcomputer based system to
help control the FI02 delivered to mechanically
ventilated newborn infants. This system utilizes a
fuzzy logic controller based on "rules" generated by
neonatologists who routinely provide care for

ventilated infants. The goal of this control system is
to maintain patient oxygenation (measured by oxygen
saturation using pulse oximetry) at a target level set
by the physician.

Instead of controlling the ventilator directly, the
system currently operates by displaying suggested
FI02 changes to the physician, who then decides
whether to execute the recommended change. This
ensures medical safety until the system is fully tested
for clinical efficacy. A clinical trial of the F102
control system is currently taking place in the
neonatal intensive care unit (NICU) of Children's
Hospital, Boston, MA.

BACKGROUND
Computer Assisted Ventilation
Investigation into computer-controlled or computer-
assisted mechanical ventilation is expanding. One
form of computer assistance is an "expert system"
designed to advise the clinicians about ventilator
management. Some recent examples include:
VentPlan, a ventilator management advisor that
interprets patient physiologic data to predict the effect
of proposed ventilator changes [4]; WeanPro, a
program designed to help wean post-operative patients
from ventilators [5]; and KUSIVAR, a program
which describes a comprehensive system for
respiratory management during all phases of
pulmonary disease. [6] Although many such expert
systems have been described, few have been tested in
clinical patient care.

Other investigators have studied direct computer
control of specialized aspects of ventilator
management. In adults for example, studies of
computer-controlled optimization of positive end-
expiratory pressure, and computerized protocols for
management of adult respiratory distress syndrome
have been explored by East. [7] A computerized
ventilator weaning system for post-operative patients
has been tested by Strickland. [8]

Experience in computer controlled ventilation in
infants, however, is limited. In one of few reports
available in the literature, Morozoff and Evans
showed that their computerized FI02 controller could
maintain the hemoglobin oxygen saturation (SaO2)
of a ventilated newborn infant for approximately 1
hour periods with results comparable to manual FI02
control. [9]
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Morozoff and Evans describe their F102 controller as
a "differential-feedback" controller. Other investigators
have described similar FI02 controllers for adults
based on the "proportional-integral-derivative" (PID)
design. [10] For best response, most PID controllers
and feedback-loop controllers need to have their
control parameters optimized for the system in which
they are used. This may lead to degradation of
performance if the system changes (e.g. if the
patient's physiologic status changes, or the controller
is switched to a new patient). Yu addressed this
problem in FI02 control by using multiple
controllers that dynamically adapted by selectively
utilizing the controller that best matched the system
response at any given point in time. [11]

Fuzzy logic controllers
Since Zadeh first published his seminal paper on
fuzzy sets in 1965 [12], applications utilizing fuzzy
logic have proliferated rapidly. Mamdani's
development of fuzzy controllers in 1974 [13] gave
rise to the utilization of these controllers in ever
expanding capacities, particularly in Japan where
many industrial processes now employ fuzzy control.
[14] In addition, fuzzy control techniques have
recently been applied to various medical processes,
such as pain control [15]and blood pressure control.
[16]

When compared to classical control theory, a fuzzy
logic approach to control offers the following
advantages: [14,17]
1) It can be used in systems which cannot be easily

modeled mathematically. In particular, systems
with non-linear responses that are difficult to
analyze may respond to a fuzzy control approach.

2) As a rule-based approach to control, fuzzy control
can be used to efficiently represent an expert's
knowledge about a problem.

3) Continuous variables may be represented by
linguistic constructs that are easier to understand,
making the controller easier to implement and
modify. For instance, instead of using numeric
values, temperature may be represented as "cold,
cool, warm, or hot".

4) Fuzzy controllers may be less susceptible to
system noise and parameter changes, thus making
them more robust.

5) Complex processes can often be controlled by
relatively few logic rules, allowing a more
understandable controller design and faster
computation fbr real-time applications.

In the context of F102 control in the newborn infant,
a fuzzy logic approach can simplify the many
complex factors and interactions that determine
patient oxygenation. For example, a ventilated infant
may exhibit decreased oxygen levels in the blood (as

measured by SaO2) for many different reasons,
including: failure to make respiratory effort, an
obstructed endotracheal tube, or an increase in
pulmonary shunting. Each cause may require differing
changes in F102 to maintain target SaO2 levels, and
many other factors may influence oxygenation. At
different times, the same magnitude of change in
F102 may result in completely different oxygenation
states, even within the same patient.

FI02 control in the newborn thus demonstrates some
of the previously mentioned features which make
classical control techniques difficult to apply: the
system to be controlled is complex with many factors
and interactions, it is very difficult to model
mathematically, and system responses to FI02
changes are often non-linear and unpredictable.

SYSTEM DESCRIPTION
FI02 Controller
We chose SaO2 as our measurement parameter and
FI02 as our control parameter for the operational
model of maintaining patient oxygenation.

SaO2 as measured by pulse oximetry is a well
established method of monitoring patient oxygenation
status. Its advantages over direct measurement of
blood oxygen levels include rapid equilibrium with
changes in blood oxygen levels, continuous
monitoring, and noninvasive sampling. We used the
error between the patient's SaO2 and the target SaO2
(ASaO2), and the slope of SaO2 (SaO2-slope) as the
specific inputs to the fuzzy controller.

Although many ventilator parameters affect patient
oxygenation (e.g. mean airway pressure, ventilatory
rate, tidal volumes, etc.), the FI02 is used to
maintain the desired oxygenation status when the
patient's overall respiratory status has been stabilized.

The design of the fuzzy controller then follows
standard methods, with fuzzification of the input
parameters, construction of fuzzy inference rules, and
defuzzification or calculation of a "crisp" output value
that represents the controller's action.

To fuzzify the input parameters, the values of ASaO2
and SaO2-slope were divided into fuzzy regions, with
7 regions chosen for ASaO2 and 5 regions chosen for
the SaO2-slope. Triangular membership functions
were assigned to each region, as illustrated in Figure
1.
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Figure 1
Membership Functions of Input Parameters

LN: large negative, MN: medium negative, SN: small negative
SP: small positive, MP: medium positive, LP: large positive

Using the fuzzy input parameters, the inference rules

that form the body of the controller were constructed
in the standard declarative form: IF situation THEN
action . The combination of 7 ASaO2 fuzzy regions
and 5 SaO2-slope fuzzy regions yields 35 rules. The
logic of these inference rules are based on the expert
knowledge of the neonatologists. Some example rules
follow:

Rule: IF the ASaO2 is small-negative
AND the SaO2-slope is medium-negative
(situation)
THEN increase the FI02 by a

medium-positive amount.
(action)

Rule: IF the ASaO2 is large-negative
AND the SaO2-slope is large-negative
THEN increase the FI02 by an

extremely-large-positive amount.
Rule: IF the ASaO2 is small-negative

AND the SaO2-slope is small-positive
THEN do nothing.

All 35 rules are summarized in Table 1.

For any pair of ASaO2 and SaO2-slope inputs, we

apply each of the inference rules in turn. Each rule
will yield an action value. The defuzzification step
then involves choosing a method to combine all the
action values into a final value (a "crisp" value) that
represents the controller output. We used the weighted
mean of all the rule outputs to produce a single
output value, in this case a change in the FI02. [18]

Although there are relatively few fuzzy inference
rules, continuously calculating the crisp output in
real-time may not always be feasible. To help
minimize time-delays, we compiled the fuzzy
inference rules into a look-up table at runtime. Thus,
during actual fuzzy control operation, evaluating the
inputs becomes a simple and fast table look-up
producing the controller output.

The FI02 controller operates as follows:
1) SaO2 values are obtained for the patient every 1-2

seconds.
2) Every 10 seconds, the ASaO2 and the SaO2-slope

are calculated.
ASaO2 = (ave. SaO2 values over last 10 seconds)

- target SaO2
SaO2-slope = least squares regression of SaO2

3) The calculated ASaO2 and SaO2-slope are used as
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Table 1
Inference rules for F102 control, given fuzzified ASaO2 and SaO2-slope

indices for the compiled fuzzy controller look-up
table. A suggested FI02 change is returned as the
controller output.

System Components
The F102 fuzzy control system is implemented on an

Apple Macintosh and is programmed in Macintosh
Common Lisp. The SaO2 data is obtained from a

Nellcor N-200 pulse oximeter through a RS-232
serial port on the back of the oximeter.

CLINICAL STUDY
Study Design
In order to test the F102 control system in a

medically safe manner, the computer did not directly
control the ventilator oxygen delivery. Instead,
suggestions for changes in FI02 were displayed for
the physician to execute according to his/her best
medical judgment. The computer system was

programmed to record automatically all recommended
and actual F102 changes.

The clinical trial protocol was approved by the
Clinical Investigations Committee of Children's
Hospital, Boston, MA., and informed consent was

obtained from the parents of patients entered into the
study. Patients were eligible if they were newborn
infants admitted to the NICU and required mechanical
ventilation. Patients were excluded if they had
demonstrated intracardiac shunting of blood from right
to left, or if they required vasoactive pressor
medications to maintain blood pressure.

Each infant was studied for a 6 hour period of time.
The initial 2 hours served as a control period during
which the computer system collected SaO2 and FI02
data. No interventions were made during this time.
For the subsequent 2 hour experimental period, the
system made recommendations for FI02 changes in
addition to acquiring data. The investigator manually
carried out the recommended FI02 changes if they
were consistent with his/her clinical judgment.
Finally, another 2 hour control period of data
gathering (without recommendations for FI02
change) completed the study period for the patient.

All clinical care activities proceeded as usual, and the
NICU medical and nursing staff were not prevented
from manually adjusting the FI02 at any time during
the trial.

Preliminary Study Results
Patient #1: target SaO2 = 93%

CtrI-1 Expt
F102 SaO2 FI02 SaO2

Ave: 26 96 25 94
SD: 0 1.6 6.0 1.9

Patient #2: target SaO2 = 95%
Ctrl-1 Expt

F102 SaO2 F102 SaO2
Ave: 27 95 26 95
SD: 4.6 3.2 6.1 2.6

Ctrl-2
F102 SaO2
26 94
2.6 3.0

Ctrl-2
F102 SaO2
29 94
8.5 5.1

(Ctrl: control period, Expt: experimental period,
Ave: average, SD: standard deviation)
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SUMMARY
Controlling oxygen exposure in newborn infants is a
delicate balance. The infants must receive enough
oxygen to ensure adequate tissue oxygenation and to
prevent hypoxemia. Conversely, too much oxygen
may produce toxic effects.

The FI02 fuzzy controller shows promise in the
preliminary trials to control patient oxygen saturation
levels, and was able to maintain a target SaO2 better
than routine manual control. Further clinical trials
will test the actual clinical efficacy of this FI02
controller, and additional patient data will allow more
fine tuning of the fuzzy control parameters (e.g. the
shape of the membership functions and the choice of
fuzzy regions).

The ease of implementing this fuzzy controller
illustrates some of the advantages of this approach.
No complex mathematical models were required, the
simple rule-based nature of the controller is easy to
understand and modify, expert knowledge about the
problem is utilized, and the controller was easily
designed for non-linear system responses.

Current research in fuzzy control include combining it
with other techniques such as neural networks and
genetic algorithms [19,20], and adaptive or self-
modifying fuzzy control. [18,21] As more medical
processes become candidates for computerized control,
the numerous options offered by these approaches
will enhance the ability to produce a safe and
clinically efficacious control system.

REFERENCE

[]]Saugstad, 0. Oxygen toxicity in the neonatal
period. Acta Paediatr Scand 1990, 79, 881.
[2]Wispe, J.; Roberts, R. Molecular basis of
pulmonary oxygen toxicity.Clin Perinatol 1987,
14, 651-66.
[3]Avery, G.; Glass, P. Retinopathy of prematurity:
what causes it?Clin Perinatol 1988, 15, 917-28.
[4]Rutledge, G.; Thomsen, G. Ventplan: a ventilator-
management advisor.Proc Annu Symp Comput Appl
Med Care 1991, 869.
[5]Tong, D. Weaning patients from mechanical
ventilation. A knowledge-based system
approach.Comput Methods Programs Biomed 1991,
35, 267.
[6]Rudowski, R.; Frostell, C.; Gill, H. A knowledge-
based support system for mechanical ventilation of
the lungs. The KUSIVAR concept and
prototype.Comput Methods Programs Biomed 1989,
30, 59.
[7]East, T.; Bohm, S. A successful computerized
protocol for clinical management of pressure control
inverse ratio ventilation in ARDS patients.Chest

1992, 101, 697.
[8]Strickland, J.; Hasson, J. A computer-controlled
ventilator weaning system.Chest 1991, 100, 1096.
[9]Morozoff, P.; Evans, R. Closed-loop control of
SaO2 in the newborn infant.Biomed Instrum Technol
1992, 26, 117.
[10]0'hara, D.; Bogen, D.; Noordergraaf, A. The use
of computers for controlling the delivery of
anesthesia.Anesthesiology 1992, 77, 563.
[1I]Yu, C.; He, W. Improvement in arterial oxygen
control using multiple-model adaptive control
procedures.IEEE Trans Biomed Eng 1986, 34, 567.
[12]Zadeh, L. Fuzzy Sets.lnf. Control 1965, 8,
338-53.
[13]Mamdani, E. Application of fuzzy algorithms for
control of simple dynamics plant. Proc. IEEE 1974,
121, 585-8.
[14]Mamdani, E. Twenty years of fuzzy control:
experiences gained and lessons learnt.Proceedings of
the Second IEEE International Conference on Fuzzy
Systems 1993, 339-44.
[15]Carollo, A.; Tobar, A.; Hernandez, C. A rule-
based postoperative pain controller: simulation
results.Int J Biomed Comput 1993, 33, 267-76.
[16]Ying, H.; McEachern, M.; Eddleman, D. W.;
Sheppard, L. C. Fuzzy control of mean arterial
pressure in postsurgical patients with sodium
nitroprusside infusion. IEEE Transactions on
Biomedical Engineering 1992, 39, 1060-69.
[17]Mamdani, E. H.; 0stergaard, J. J.; Lembessis, E.
In Advances in fuzzy sets, possibility theory, and
applications; P. P. Wang, Ed.; Plenum Press: New
York, 1983.
[18]Glorennec, P. Y. In Fuzzy Logic; R. Lowen and
M. Roubens, Ed.; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1993; pp 541-55 1.
[19]Nauck, D.; Klawonn, F.; Kruse, R. Combining
neural networks and fuzzy controllers In: Fuzzy Logic
in Artificial Intelligence. 8th Austrian Artifical
intelligence Conference, FLAI '93. E. P. Klement and
W. Slany. Linz, Austria: Springer-Verlag, 1993:35-
46.
[20]Takagi, H.; Lee, M. Neural networks and genetic
algorithm approaches to auto-design of fuzzy
systems. In: Fuzzy Logic in Artificial Intelligence.
8th Austrian Artifical intelligence Conference, FLAI
'93. E. P. Klement and W. Slany. Linz, Austria:
Springer-Verlag, 1993:68-79.
[21]Now6, A.; Vepa, R. A reinforcement learning
algorithm based on 'safety' In: Fuzzy Logic in
Artificial Intelligence. 8th Austrian Artifical
intelligence Conference, FLAI '93. E. P. Klement and
W. Slany. Linz, Austria: Springer-Verlag, 1993:47.

761


